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Al~traet--The growing lexicon for shear-sense indicators has created a need for a unified conceptual system of 
classification. Many common shear structures can be described by linear combinations of two kinematic variables 
which quantify the relative importance of objects vs foliations in controlling the shear-zone velocity field. 

INTRODUCTION 

STRUCTURAL geologists command a growing repertoire 
of practical criteria for inferring shear sense in rock (see, 
for example, J. Struct. Geol., Vol. 9, No. 5/6, 1987). The 
nomenclature for these shear-sense indicators has be- 
come increasingly elaborate as new types of structures 
are recognized. The purpose of this paper is to suggest a 
two-variable kinematic scheme for classifying some 
common shear-generated meso- and microstructures. 
Such a scheme may help to (1) clarify the kinematic 
relationships among currently used shear-sense indi- 
cators and (2) eliminate the need for neologies as new 
variations are identified. 

spatial variations in strain rate within a shear zone. 
Characterization of strain-rate gradients is therefore a 
potential basis for a shear-zone classification scheme. As 
a starting point for such a scheme, shear-sense indicators 
might be classed according to the relative kinematic 
importance of objects vs foliations in their development. 
The form of object-dominated indicators (e.g. 
porphyroclast systems) is controlled by the shear- 
induced rotation of objects in the shear zone, while the 
form of foliation-dominated indicators (e.g. S-C fab- 
rics) is controlled by the relative slip rates along surfaces 
in the shear zone. This dichotomy is explored below. 

ISOLATING APPROPRIATE 
SHEAR-ZONE DESCRIPTORS 

Identifying variables for a shear-zone classification 
system is not trivial. The variables should be able to 
describe the widest possible range of shear-zone fea- 
tures. The ideal variables would be 'basis vectors' which 
span the vector space of all shear-zone structures, en- 
abling some linear combination of the variables to 
characterize any shear zone. Several important studies 
have related the development of certain shear-zone 
features to finite shear strain (e.g. Hudleston 1980, 
White etal. 1980, Wilson 1984) or to various geometrical 
and mechanical characteristics such as porphyroclast 
shape, orientation and recrystallization rate (Passchier 
& Simpson 1986, Passchier 1987). It may be useful, 
however, to isolate kinematic variables which en- 
compass these types of parameters, such that the physi- 
cal characteristics of a given shear zone at a given time 
could be represented by particular values of these 
higher-order variables. 

From a kinematic perspective, the morphologies of 
shear-generated structures can be considered records of 

Quantifying object dominance 

A possible measure of object dominance is the degree 
of coupling between an object and its shearing matrix, as 
measured by the spatial velocity gradient at the object- 
matrix boundary in the direction perpendicular to the 
boundary (Fig. 1). In a polar co-ordinate system cen- 
tered on an object of circular cross-section and unit 
radius, the object-matrix boundary velocity gradient 
would be dr/dr at r= l  (where v is the position- 
dependent particle velocity and r is the radial distance 
from the object center). If an object is absolutely rigid 
relative to the shearing matrix, the shear-induced vorti- 
city of the matrix is converted at the object boundary 
into spin vorticity within the object (rotation relative to 
an external reference frame) (Lister & Williams 1983). 
If there is no velocity gradient across the object-matrix 
boundary (i.e. a no-slip boundary, Fig. la), the angular 
velocity of the object will equal half the bulk shear rate 
(Jeffrey 1922, Freeman 1985). As it rotates, the object 
will pull adjacent parts of the matrix with it, If the matrix 
is layered, asymmetric folds will develop next to the 
object (Simpson & Schmid 1983). 

If, in contrast, there is a velocity gradient across the 
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Fig. I. Object-matrix boundary velocity gradient, a measure of 
object-dominance, in each part, thin arrows represent local veloeit~ 
vectors, dark arrow shows direction in which gradient is measured, and 
broken line shows shear rate. (a) Low object-matrix boundary gradi- 
ent (no-slip boundary). Object (shaded) is perfectly rigid relative to 
matrix. (b) Moderate object-matrix boundary gradient (slipping 
boundary). Slip may be accomplished by deformation of outer part of 
the object, as illustrated, or by dissolution and reprecipitation of 
matrix material at the object-matrix contact. (e) High object-matrix 
boundary gradient. Illustrated is the limiting case in which the object is 
completely passive and the object-matrix boundary velocity gradient 

is equal to the overall shear rate. 
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Fig. 2. Transverse shear-rate gradient, a measure of foliation domi- 
nance. In each part. thin arrows represent local velocity vectors, dark 
arrow shows direction in which gradient is measured, and broken line 
shows shear rate. (a) Low transverse shear-rate gradient (homo- 
geneous simple shear; passive foliation). (b) Moderate transverse 

shear-rate gradient. (e) High transverse shear-rate gradient. 

kinematic dominance of particular shear planes also 
depends on the relative spacing of these slipping planes.) 
In summary, high transverse shear-rate gradients corre- 
spond to high foliation dominance (active behavior) 
while low gradients correspond to low foliation domi- 
nance (passive behavior). 

object-matrix boundary (i.e. a slipping boundary, Fig. 
lb), the shear-vorticity-spin-vorticity transition will 
occur across a zone rather than a sharp surface. Pure 
spin may be important only in the core of the object. The 
object will thus be partly decoupled from the shearing 
matrix and will not strongly influence flow in the matrix. 
In natural shear zones, such decoupling may arise from 
deformation and recrystallization of the object (por- 
phyroclast tails) or dissolution and reprecipitation of 
matrix material (pressure shadows). In the limiting case. 
no part of the object spins, and the entire object deforms 
passively with the matrix. For this case, the object- 
matrix boundary velocity gradient has its maximum 
possible value: the shear rate of the surrounding matrix 
(Fig. lc). In summary, object-dominated shear zones 
can be characterized by object-matrix boundaries with 
low velocity gradients and sharp vorticity partitioning. 
Conversely, shear zones with low object dominance 
reflect finite velocity gradients and diffuse vorticity par- 
titioning across object-matrix boundaries. 

Quantifying foliation dominance 

An analogous kinematic descriptor of foliation domi- 
nance is the spatial gradient in shear-strain rate across 
shear planes in a shear zone (Fig. 2). If the shear 
direction is parallel to the x axis of a Cartesian co- 
ordinate system, the transverse shear-rate gradient is 
d/dy (dT,/dt) at the y co-ordinate of a particular shear 
plane (where 7' is the time- and position-dependent shear 
strain). This gradient is zero at every point in a zone of 
homogeneous simple shear because there is no change in 
the rate of shear strain across the zone (Fig. 2a). The 
transverse shear-rate gradient is non-zero, however, if 
the shear rate along certain material planes is higher 
than the shear rate elsewhere in the shear zone (Figs. 2b 
& c). The planes of relatively rapid shear will then act as 
the dominant components in the system, controlling the 
kinematic response of material between them. (The 

LINEAR COMBINATIONS OF THE VARIABLES 

How well do these two shear zone descriptors-- 
object-matrix boundary velocity gradient and trans- 
verse shear-rate gradient--span the space of possible 
shear-zone features? How do these kinematic variables 
correspond to 'real' shear-zone variables? Figure 3 
shows nine categories of shear structures corresponding 
to linear combinations of low, intermediate and high 
values of the two kinematic variables. Each of these 
categories will be examined briefly. The order in which 
the categories are discussed is not meant to connote 
temporal evolution, but to illustrate how common shear- 
sense indicators can be represented within a two- 
dimensional kinematic continuum. 

Category a: Low object-matrix boundary velocity 
gradient, low transverse shear-rate gradient 

This is the most purely object-dominated category of 
shear structures. There is no differential movement 
between the object and its passive matrix. Induced to 
rotate by the shearing matrix, the object itself influences 
the local flow field in the matrix by pulling matrix 
material with it along its no-slip boundary. In a layered 
medium, asymmetric microfolds develop next to the 
object and provide unambiguous shear-sense infor- 
mation (Simpson & Schmid 1983, fig. 4G). The rotating 
object will also perturb the simple shear velocity field in 
the passive matrix up to several radii from the object 
center (Langlois I964), If layer spacing is on the order of 
the object radius, asymmetric folds will develop on the 
downshear sides of the object as layers are rotated into 
positions oblique to the shear direction (Hudleston 
1976). Such folds have been simulated mathematically 
(Bjornerud 1989) and generated in silicon scale models 
by Van den Driessche & Brun (1987), who called them 
"rolling structures". If the matrix is not layered or if 
layer spacing is large relative to the object diameter, the 
object-induced deformation of the matrix may not be 
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Fig. 3. Linear combinationsofthetwokinematicvariables. Object-dominated shear structures appear in top row; foliation- 
dominated structures in right column. (a) Rolling structures (Van den Driessche & Brun 1987. Bjornerud 1989). (b) b-type 
porphyroclasts (Passchier & Simpson 1986) and asymmetric pressure shadows (Durney & Ramsay 1973). (c) Hybrid 
porphyroclasts (Passchier & Simpson 1986). (d) o-type porphyroclasts (Passchier & Simpson 1986), (e) Type I S-C fabrics 
(Berth6 et al. 1979. Lister & Snoke 1984). (f) Type !1 S-C fabrics (Lister & Snoke 1984) and extensional crenulation 
cleavage, shear bands, etc. (Platt & Vissers 1980. Dennis & Secor 1987). (g) Fractured grains and clasts (Simpson & Schmid 

1983). (h) Damped rolling structures and 0 porphyroelasts. (i) Ambiguous (symmetrical) structures. 

visible and no useful shear-sense information will be 
recorded. 

Category b: Moderate object-matrix boundary velocity 
gradient, low transverse shear-rate gradient 

In this category, there is some decoupling between 
object and matrix and thus the influence of object 
rotation on matrix flow is diminished. Matrix layering, if 
it exists, is still mechanically passive. Asymmetric micro- 
folds will develop in layers adjacent to the object, but the 
fold amplitude at a given shear strain will not be as great 
as for no-slip boundaries. If layer spacing is small rela- 
tive to object size, folds may develop further out in the 
matrix, but they will not propagate as far as in a tightly 
coupled object-matrix system. Natural shear-sense indi- 
cators in this category include asymmetric pressure sha- 
dows around resistant objects (Durney & Ramsay 1973, 
Etchecopar & Malavieille 1987) and 6-type porphyro- 
clasts (Passchier & Simpson 1986). In the case of pyrite- 
type pressure shadows (Ramsay & Huber 1983, pp. 265- 
269), differential object-matrix movement is expressed 

as pressure solution of matrix material at points of stress 
concentration on the object-matrix contact. For crinoid- 
type pressure shadows, object material is dissolved and 
reprecipitated. For ,5-porphyroclasts, object-matrix slip 
is allowed by recrystallization of the outer part of the 
porphyrodast. Passchier & Simpson (1986), who syste- 
matized the analysis of shear-zone porphyroclasts, 
suggested that 6-porphyroclasts develop when the ratio 
of shear rate to recrystallization rate is relatively high. 
From a kinematic perspective, the recrystallization rate 
represents the velocity gradient across the object-matrix 
boundary. 

Categories c and d: High object-matrix boundary 
velocity gradient, low to moderate transverse shear-rate 
gradient 

In these categories, slip at the object-matrix contact is 
significant, and the shear-vorticity-spin-vorticity tran- 
sition occurs over a broad zone. As a result, features 
related to object rotation are subdued or absent. 

If the matrix is also passive (no transverse shear rate 
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gradient; category c), neither the object nor the foliation 
is kinematically dominant. The result may be mixed b--o 
porphyroclast systems (Passchier & Simpson 1986) 
exhibiting both (1) minor 6-type microfoids of material 
pulled with the object, and (2) small recrystallized or- 
type tails dragged into the overall shear direction. Pass- 
chier & Simpson (1986) suggest, however, that mixed 6-  
o porphyroclasts may require an increase in shear-strain 
rate over time. Such time dependence of strain rate is 
not represented in the two-dimensional continuum of 
Fig. 3. 

If the matrix is not completely passive (finite trans- 
verse shear-rate gradient; category d ), true a porphyro- 
clasts will be produced because the magnitude of the 
velocity-field perturbation produced by the object will 
be smaller than the relatively rapid shear rate on certain 
material planes. 

Category e: High object-matrix boundary gradient, high 
transverse shear-rate gradient 

This is the most purely foliation-dominated category, 
of shear structures. A single family of slip planes dictates 
the kinematic behavior of the zone. Objects, if present, 
exert no control on the velocity field in the matrix, but 
passively record the state of cumulative strain in the 
regions between the planes of easy slip. The obvious 
geologic expression of this category is the Type I S-C 
fabric (Berth6 etal. 1979, Lister & Snoke 1984), in which 
slip is concentrated along C (shear) surfaces while S 
(finite flattening) surfaces develop in the material in 
between. Passchier & Simpson (1986) illustrated the 
morphoiogic link between o porphyroclasts and S-C 
fabrics. I suggest that the only kinematic difference 
between these two end-member structures is the relative 
magnitude of shear-rate gradients across their respective 
shear planes. 

Category f: Moderate object-matrix boundary gradient, 
high transverse shear-rate gradient 

In this category, rapidly slipping shear planes are 
again kinematically dominant, but the intervening ma- 
terial is not totally passive. Instead, shear-vorticity- 
spin-vorticity partitioning occurs within subdomains be- 
tween the planes. Type II S-C fabrics in which mica 
porphyroblasts spawn mica 'fish" (Lister & Snoke 1984) 
are one geologic expression of this category. The mica 
porphyroblasts have some finite strength relative to the 
surrounding material between the shear planes, and 
they convert the shear-induced vorticity of this material 
to spin vorticity by spalling off the 'fish' which rotate 
with respect to an external reference frame. 

Other examples of category f structures are exten- 
sional crenulation cleavages (Piatt & Vissers 1980), 
shear bands (White et al. 1980) and P-shears (Tchalenko 
1970). Dennis & Secor (1987) and Mawer & White 
(1987) have suggested that these features share the same 
kinematic function. In each case, subdomains between 
shear planes undergo rotation relative to an external 

reference frame, in addition to some deformation. Den- 
nis & Secor (1987) have shown that these rotations 
collectively act to maintain the orientation of the shear 
zone by effecting net displacement in the overall slip 
direction. This is consistent with the idea that the high 
transverse shear-rate gradient across the shear planes is 
dominant over object-matrix vorticity partitioning be- 
tween these planes. 

Category g: Low object-matrix boundary gradient, high 
transverse shear-rate gradient 

In this category, mechanically active objects and folia- 
tions compete for kinematic dominance. As in the pre- 
vious two categories, shear planes are well-defined; but 
so too are object-matrix boundaries. Shear-vorticity- 
spin-vorticity partitioning occurs at a sharp surface. A 
geologic example is a grain or clast that has fractured but 
undergone no plastic deformation in a mylonite. The 
rotation of such an object may have been inhibited by its 
inequant shape and its orientation relative to the rapidly 
slipping planes (Passchier 1987), but its rigidity relative 
to the shearing matrix necessitated some type of vorti- 
city conversion. Slip along oblique surfaces accomp- 
lished the conversion to spin vorticity. The orientation 
of these secondary slip planes may not provide reliable 
shear-sense information, as they may have been pre- 
existing surfaces along which rotation was most easily 
accommodated (Dennis & Secor 1987). 

Category h: Low oblect-matrix boundary gradient, 
moderate transverse shear-rate gradient 

This category is object-dominated, but shear-rate 
gradients across shear planes are significant enough to 
partly counteract the object's kinematic control of the 
matrix. The object rotates and pulls adjacent matrix 
material with it. In a layered matrix, asymmetric folds 
develop next to and outward from the object as in 
category a, but the folds are not likely to propagate 
across shear planes, because the transverse shear-rate 
gradient will be greater than the object-induced velocity 
perturbation in the far field. The resultant structures 
might be called "'damped rolling structures", as the 
moderately active shear planes act to subdue the kine- 
matic effect of the object. These structures are distinct 
from 6 porphyroclasts in that the material which forms 
the visible spiral around the object is matrix layering, 
rather than a recrystallized mantle derived from the 
porphyroclast. 

Other structures which could be classed in this cat- 
egory are 0 porphyroctasts (Hooper & Hatcher 1988). 
The morphology of 0-type systems is rather puzzling, 
however. Although the porphyroclasts lack recrystal- 
lized mantles (indicating little decoupling of object and 
matrix), the perturbation of layering around the por- 
phyroclasts does not seem commensurate with the finite 
shear strains that the host mylonites appear to record. 
This may indicate that 0 porphyroclasts, like mixed 6-a  
porphyroclasts, reflect a temporal change in strain-rate 
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gradients within the shear zone, in which an initially 
passive matrix becomes increasingly foliated and kine- 
matically dominant as deformation progresses. 

Category i: Moderate object-matrix boundary gradient, 
moderate transverse shear-rate gradient 

Both objects and foliations exert kinematic control in 
this category. The object is slightly decoupled from the 
matrix, and the effects of object rotation are counterbal- 
anced by the effects of relatively rapid slip on shear 
planes. Geologic structures in this category are frustrat- 
ingly common: porphyroclasts, pressure shadows, and 
deformed grains which are symmetrical with respect to 
the mylonitic foliation and yield no clear shear-sense 
information. 

CONCLUSIONS 

Common shear-sense indicators with a wide range of 
morphologies can be portrayed within a two- 
dimensional kinematic continuum according to the rela- 
tive importance of objects vs foliations in controlling 
flow within the shear zone. Object dominance. 
measured by the velocity gradient at an object-matrix 
boundary in the direction orthogonal to that boundary. 
is a function of interrelated variables including: (1) 
compositional and mechanical contrasts between the 
object and matrix; (2) the object shape and orientation 
relative to the shear planes; and (3) deformation and 
recovery mechanisms and rates (e.g. extent of pressure 
solution of the matrix next to a pyrite crystal, or the rate 
of recrystallization of a porphyroclast mantle). Foliation 
dominance, expressed by the shear rate gradient across 
planes subparallel to the shear zone, is dependent on 
natural variables such as: (1) the existence and mechan- 
ical properties of pre-deformation layering; (2) defor- 
mation mechanisms and metamorphic differentiation; 
and (3) finite strain and strain history of the shear zone 
(and associated grain-size reduction or development of 
dimensional- and lattice-preferred orientation) (White 
et al. 1980, Burg et al. 1986). 

The objective of this paper has been to illustrate the 
kinematic unity of seemingly distinct species of shear- 
sense indicators. It is likely, however, that the 'vector 
space' of shear-zone features is not two-dimensional but 
three- or poly-dimensional. Additional variables may be 
necessary to describe other types of shear-generated 
structures. In particular, temporal changes in strain-rate 
gradients, related to changing frictional behavior or to 
heterogeneous volume loss, almost certainly influence 
the morphologies of some shear-zone structures. In 
addition, most natural structures probably develop 
under some combination of progressive simple and pro- 

gressive pure shear, so strain-rate gradients in the third 
dimension must also be considered. The present classifi- 
cation scheme therefore represents only one planar 
projection of the kinematic vector space of shear- 
generated features. 
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